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Abstract. A discrete shell model is proposed to describe the radial deformation of carbon nanotubes under
a hydrostatic pressure and the radial Young’s modulus of (single- or multi-walled) nanotubes is obtained.
It is found that the radial modulus decreases with increasing tube diameter while increases with increasing
number of layers. The computational results agree well with the previous results of SWNTs and indicate
that the radial modulus of carbon nanotubes is independent of the Poisson’s ratio.

PACS. 61.46.Fg Nanotubes – 62.25.+g Mechanical properties of nanoscale materials

1 Introduction

Since the discovery of carbon nanotubes (CNTs) in 1991,
their exceptional mechanical, electrical, and thermal prop-
erties have attracted great scientific and technological in-
terest [1–6]. In the past several years, much effort has been
made to theoretically characterize their mechanical prop-
erties that CNTs were found to be significantly stiffer than
most materials ever known. As pointed out by previous ex-
perimental and theoretical studies, the Young’s modulus
for single-walled nanotubes (SWNTs) was found to be dis-
tributed over a wide range, from 0.5 TPa to 5.5 TPa [7–12]
and for multi-walled carbon nanotubes (MWNTs) it was
reported to be 1.8 ± 0.9 TPa [13]. It has also been re-
ported that in graphite the elastic constant C11 in plane
was 1.06 TPa, while the perpendicular elastic constant
C33 yielded only 36 GPa [12]. Similarly, the radial Young
modulus of CNTs is expected to be much smaller than
the axial one. However, it has been noticed that previous
studies of CNTs mainly focused on the longitudinal, or
axial properties, but their radial behaviors were not very
well understood. For applications in nanoelectromechani-
cal and nanoelectronic systems, obtaining a fundamental
understanding of the radial deformability of CNTs is as
important as knowing the longitudinal properties. One ex-
ample is that the radial deformation of CNTs may strongly
affect their electrical properties [4–6].

Up to now, the experimental understanding of radial
stiffness of CNTs was based on studies performed on single
tube, with an unknown number of layers, and using defor-
mations up to the nonlinear regime [14–17]. Theoretically,
Reich et al. [18] used an ab initio simulation to calculate a
nanotube of diameter 0.8 nm and obtained a radial modu-
lus of about 650 GPa. To investigate the dependence of the
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radial modulus of SWNTs on tube diameter, Li and Chou
[19] modeled the elastic deformation of SWNTs under hy-
drostatic pressure using a molecular structural mechanics
method. SWNTs were reported to be more deformable in
the radial direction than MWNTs, and their elasticity de-
pends on tube diameter and the number of layers under
compression. Therefore, further theoretical investigations
of the radial modulus of MWNTs are desirable in order
to gain a more quantitative understanding of their prop-
erties.

2 Model and formulation

This paper analyzes the elastic deformation of SWNTs
and MWNTs under a hydrostatic pressure using a dis-
crete shell model, and examines the variation of the radial
Young’s modulus with nanotube diameter.

It is widely accepted that SWNTs or MWNTs can be
treated as single or concentric multiple layers of cylin-
der rolled up from graphite sheets. In order to investigate
the elastic properties of an individual nanotube (single-
or multi-walled), for simplicity we consider a MWNT, of
which the outermost layer is exposed to a hydrostatic pres-
sure. Each single nanotube is modeled as a hollow cylinder
with free ends and thickness h = 0.066 nm, as shown in
Figure 1. The stress components of a cylindrical shell un-
der an external radial pressure can be expressed as [20–22]

σrr = −A

(
1 − B

r2

)
, σθθ = −A

(
1 +

B

r2

)
and σzz = 0,

(1)
where r, θ and z are the three cylindrical coordinate,
and A and B are two constants varying with layer in the
MWNT and determined by boundary conditions. Given
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these, we obtain the deformation in the radial direc-
tion [20]

un(r) = −A

(
1 − ν

Y
+

1 + ν

Y

B

r2

)
r, (2)

where n(r) refers to the nth layer of the MWNT and
ν is the Poisson’s ratio for CNTs. Y is the longitudi-
nal Young’s modulus of SWNTs, which has two differ-
ent kinds of definitions. One is to take interlayer spac-
ing t = 0.34 nm [23] between graphite sheets instead
of the thickness of SWNTs, and obtain the correspond-
ing Youngs modulus Y = 1.0 TPa [12,24]. According
to this definition, researchers treated MWNTs as assem-
blies of concentric shells, each representing a constituent
SWNT, just like ours. But they neglected the thickness of
SWNT and took the average interwall spacing to be the
representative thickness for each of the concentric shells.
This approximation leads to a theoretical prediction that
Youngs moduli of SWNTs and MWNTs are approximately
the same, and close to 1 TPa. However, the energy of
such a shell is found to be about 26 times larger than
that of SWNTs calculated through atomic models [25].
The other one is to use the classic formula: the bend-
ing rigidity Db = Y h3/12(1 − ν2) and the tensile rigid-
ity Da = Y h, and get the thickness and the longitudi-
nal Young’s modulus of SWNTs, around 0.066 nm and
5 TPa respectively, which was done by Yakobson et al.
[26]. The latter treatment demonstrated remarkable suc-
cess in interpreting many behaviors of SWNTs, in par-
ticular, through their MD simulations using the Tersoff-
Brenner potential [26]. In the present paper, MWNTs are
also teated as assemblies of concentric SWNT shells. How-
ever, instead of obtaining the Youngs moduli of MWNTs
through a first principle calculation, we adopt a classical
method using van de Waals force and elastic energy func-
tion to bind SWNTs together, and the behavior of the out-
most SWNT is what we want to know. Thus, the definition
given by Yakobson, Brabec, and Bernhole will be followed,
that is, the thickness of SWNTs t = 0.066 nm and the cor-
responding longitudinal Youngs modulus Y = 5 TPa are
used.

Now we consider a SWNT of external radius R1(ex) and
internal radius R1(in) = R1(ex) − h. Suppose an external
pressure P1(ex) is imposed on the external wall, setting
σrr = −P1(ex) for r = R1(ex), and σrr = 0 for r = R1(in)

yields A and B, which, according to equation (2), leads to
a radial displacement of the external wall

u1(ex) = −P1(ex)R1(ex)

Y

[
R2

1(ex) + R2
1(in)

R2
1(ex) − R2

1(in)

− ν

]
.

Given this, the radial Young’s modulus is

E1
r =

P1(ex)

|u1(ex)|
R1(ex)

=
Y

R2
1(ex)+R2

1(in)

R2
1(ex)−R2

1(in)
− ν

.

A MWNT can be thought of as a number of above-
mentioned concentric SWNTs of different radii grouped

Fig. 1. Cross section of a MWNT. The adjacent layer is a
distance d apart.

around the central axis. h = 0.066 nm, as mentioned
above, is the effective wall thickness of each SWNT and
d = 0.34 nm [23] is the distance between adjacent layers
of the MWNT. Suppose Ri(in) and Ri(ex) are the inter-
nal and the external radius of the ith layer of the MWNT
respectively, as shown in Figure 1, we have

Ri(in) = Ri(ex) − h, (3)
Ri(in) = Ri−1(in) + d. (4)

The van der Waals force between adjacent carbon layers
requires [27]

Pi(in)Ri(in) = Pi−1(ex)Ri−1(ex). (5)

On the other hand, once an external hydrostatic pressure
is applied to an n-layer MWNT, the deformation of the
MWNT leads to an elastic energy Fn defined as

Fn = 2π

n∑
i=1

(∫ Rn(ex)

Rn(in)

frdr

)
, (6)

where f is the strain energy density given by

f =
1

2Y
[(σ2

rr +σ2
θθ +σ2

zz)−2ν(σrrσθθ +σrrσzz +σzzσθθ)].

(7)
A minimization of the strain energy Fn

∂Fn

∂Pi(in)
= 0, i = 2, 3, 4 · · ·n, (8)

delivers the relationship between Pi(ex) and Pi(in):
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Pi(in) =
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(3 ≤ i ≤ n), (9)

with Pn(ex) = P0. Combining equation (9) with equa-
tions (5) yields Pi(ex) and Pi(in) for all layers.

It is interesting to note that although strain energy
is related to the Poisson’s ratio ν, the relation between
Pn(ex) and Pn(in) in equations (9) is independent of it. In
most cases R1(ex) � h (=0.066 nm), equations (9) can be
simplified as

P2(in) =
R2(ex)

R1(ex) + R2(ex)
P2(ex), (10)

Pi(in) =
Ri(ex)

(1 − Pi−1(in)

Pi−1(ex)
)Ri−1(ex) + Ri(ex)

Pi(ex) (3 ≤ i ≤ n).

(11)
Once the connection between Pn(ex) and Pn(in) is built,
the constants An and Bn of the outermost layer can also
be obtained,

An =
R2

n(ex)Pn(ex) − R2
n(in)Pn(in)

R2
n(ex) − R2

n(in)

,

Bn =
R2

n(ex)R
2
n(in)(Pn(ex) − Pn(in))

R2
n(ex)Pn(ex) − R2

n(in)Pn(in)
. (12)

Given the constants An and Bn, the radial Young’s mod-
ulus is thus

En
r =

Pn(ex)

| un(ex) | /Rn(ex)
, (13)

where un(ex) is the radial displacement of the exter-
nal tube given by equation (2). When R1(ex) � h
(=0.066 nm), the radial Young’s modulus can be re-
duced to

En
r =

Y h

(1 − Pn(in)

Pn(ex)
)Rn(ex)

, (14)

which is also independent of the Poisson’s ratio ν.

3 Results and discussion

Figure 2 shows the radial Young’s modulus of a SWNT
as a function of external diameter of the tube with differ-
ent values of ν, used by different researchers [12,24,26]. It
is found that the radial Young’s modulus decreases with
increasing external diameter, but responds little to the
values of ν. More precisely, the radial modulus increases
dramatically for tubes with external diameter smaller than
2 nm, and levels off to 36 GPa in the larger diameter, as
can be seen in Figure 3 (lower most curve). The theoret-
ical evaluation using the present model agrees quantita-
tively well with the previous experimental [15] or theo-
retical [18,19] results, which are also shown in Figure 2

Fig. 2. Radial Young’s modulus of SWNTs in transverse di-
rections.

Fig. 3. Radial Young’s modulus of MWNTs in transverse di-
rections.

as data-points. The variations of the radial Young’s mod-
ulus for MWNTs with number of layers are plotted in
Figure 3. As can be seen, the larger the number of layers
of the tubes, the stiffer they are. And the radial Young’s
modulus sharply decreases with the increase in diameter
for MWNTs at constant number of layers, which is con-
sistent with the previous result obtained for SWNT. This
is reasonable if we consider the elastic energy necessary
to roll up from a graphite sheet and the van der Waals
forces between adjacent layers, which has been confirmed
by experiments [28].

Here it is necessary to point out that our results in
Figure 3 are a bit larger than those obtained by experi-
ment [28]. This is understandable because our simulation
is based on the model under a homogeneous hydrostatic
pressure in the transverse plane, which is different from
the setup in the experiment, using a scanning probe mi-
croscope or tapping-mode atomic force microscope. The
MWNTs in the experiments as carried out by Palaci et al.
were exposed to a uni-directional force using a cantilever
of the atomic force microscope (AFM), which is actually
not a pressure strictly in radial direction. The transverse
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modulus obtained by this means is thus smaller than our
results as it is always easier to deform a tube using a uni-
directional force than a transversely homogeneous one.

4 Summary

In summary, this paper predicts the radial Young’s modu-
lus of SWNTs and MWNTs under a hydrostatic pressure
using a discrete shell model to describe the radial defor-
mation of CNTs. The computational results indicate that
the radial modulus decreases with increasing tube diame-
ter while increases with increasing the layers’ number, but
is independent of Poisson’s ratio.

This work is supported by the National Science Foundation of
China under Grant Nos. 10225420, 90206039 and 20021002.
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